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1. INTRODUCTION

Skewness of the vertical velocity probability distri -
bution has been shown to be one of the key factors in
the complex process of vertical diffusion of a tracer or
pollutant emitted into an unstable, convective boundary
layer or CBL (Lamb, 1982). In the CBL, the probability
distribution of fluid vertical velocity, P ( w f), is
positively skewed and, therefore, non-Gaussian. A typi -

cal value of skewness, S ≡ wf
3 wf

2( )3/ 2
, in the CBL is

0.6 (Wyngaard, 1988). Positive skewness in the
inversion-capped CBL is due to solar heating of the sur-
face which generates strong updrafts or thermals over
approximately 40% of the horizontal area with compen-
sating weaker downdrafts over about 60% of the area.
Compared to unskewed turbulence, dramatic differ-
ences in vertical diffusion result. For example, pollutant
emitted from an elevated, continuous, non-buoyant
source has a higher probability of meeting a downdraft
in skewed turbulence, so the locus of maximum time-
average concentration decreases in height with
downwind distance.

A powerful approach to modeling complex turbu-
lent diffusion processes, such as those in the CBL, is the
Lagrangian stochastic simulation technique based on
the Langevin equation for the motion of a tracer particle
within the surrounding fluid (see reviews by Sawford,
1985 & 1993). The Langevin equation equates the net
force on a fluid element associated with the tracer par-
ticle to the sum of a deterministic force (such as a
damping force) and a random force. Integration of the
Langevin equation over time provides a means of calcu-
lating successive Lagrangian velocity and displacement
increments of the fluid element or particle. From many
independent particle trajectories, ensemble-average and
(in stationary turbulence) time-average concentrations
can be calculated. Thomson (1987) showed that the
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most rigorous criterion to date for a Langevin equation
model is the "well-mixed condition". That is, a tracer
initially well-mixed in a fluid must remain so, and,
therefore, the joint probability distribution of position
and velocity of a tracer will remain the same as that of
the fluid.

Standard Langevin equations use Gaussian random
forcing terms, but can be generalized to include non-
Gaussian or skewed forcing (van Kampen, 1992). Both
types of Langevin equations have been used for skewed
turbulence. An approach introduced by Thomson
(1987) for treating skewed turbulence in a Langevin
model with Gaussian  random forcing has been the most
successful. Using this approach CBL vertical diffusion
models have been developed (e.g., Luhar & Britter,
1989 and Weil, 1990). These models meet the well-
mixed condition and have achieved good results. Even
so, there are some undesirable features of these models.
The resulting deterministic forces in these models are
complex and difficult to interpret physically. In
addition, some models of this type lack generality, in
that they don't result in Gaussian random forcing when
skewness is zero. Development of Langevin equation
models with skewed  random forcing (see Thomson,
1984; van Dop et al., 1985; de Baas et al ., 1986;
Sawford, 1986; Sawford and Guest, 1987) have been
less successful in meeting the well-mixed condition in
skewed, inhomogeneous turbulence. The reasons for
these failures appear to be multiple, including
difficulties in treating inhomogeneous turbulence and
the interaction with boundaries (Sawford and Guest,
1987).

In this paper we present a numerical method for
solving the generalized Langevin equation of motion
with skewed random forcing for the case of
homogeneous, skewed turbulence. We begin by
showing how the analytic solution to the Langevin
equation for this case can be used to determine the rela-
tionship between the particle velocity moments and the
properties of the skewed random force. We then present
a numerical method that uses simple probability
distribution functions to simulate the effect of the



random force. The numerical solution is shown to be
exact in the limit of infinitesimal time steps, and to be
within acceptable error limits when practical time steps
are used.

2. LANGEVIN EQUATION MODEL

The Langevin equation generalized to include
skewed random forcing can be written as follows (van
Kampen, 1992):

dw

dt
= −w

τ + Λ (t) , (1)

where w  is the particle velocity, t is time, τ  is the
Lagrangian correlation time scale, and Λ (t)  is the
skewed random force (per unit mass). The deterministic
damping force is –w /τ. The random force, Λ (t)  , is not a
function of w  and has statistical properties defined by
the cumulants

  

Λ (t1)Λ (t2 )LΛ (tn ) =

      Γnδ (t1 − t2 )δ (t1 − t3 )Lδ (t1 − tn ) ,
(2)

where x  denotes the cumulant of a quantity x, {Γn}

are coefficients to be determined, and n =1, 2, … . A
cumulant of order n is a function of the moments of
order n and lower (Gardiner, 1985). For a Gaussian
distribution, Γn  = 0 for n  > 2, so the higher order
cumulants (n > 2) are a measure of the departure from a
Gaussian distribution. The random force, Λ (t) , is seen to
be delta-function correlated in time, which means it is
uncorrelated over any time period of interest. We will
assume that the random force has zero mean,
Λ (t) = Γ1 = 0  (this implies that the steady-state mean
fluid velocity is zero).

For homogeneous turbulence, the time scale τ  and
the set of coefficients {Γn} are constant. Consequently,
the Langevin equation (1) can be formally integrated to
yield the velocity equation

  

w(t) = w(0)e− t τ + e(s− t ) τ Λ (s)ds
0

t

∫
≡ R(t)

1 244 344

. (3)

This equation is stochastic in nature and yields the
velocity of a particle at time t given the initial velocity
at time zero. The new velocity is composed of two
terms: a deterministic term that is proportional to the
initial velocity, w (0), and a random term that is a
function of the random force, Λ(t) . The statistical
properties of the random velocity increment, R(t), in
terms of its cumulants can be readily calculated using
the definition of R(t) presented in (3), the cumulants of
Λ(t) given in (2), and by carrying out the necessary time
integration. The result is

Rn (t) = 1
n Γnτ 1 − e−nt / τ( ). (4)

The moments of R(t), Rn (t) , can be calculated directly
from (4) using the definition of the cumulant. Similarly,

the time-dependent particle velocity moments, wn (t) ,
for n = 1, 2, … , can be determined using (3) and the
moments of R( t). Note that both R( t) and w(t) are
described by the same probability distribution function
since they are linearly related.

Now, in the limit of t→∞ , we see from (3) that the
particle velocity is equal to the velocity increment R (t).
Consequently, all the respective limiting moments (and
cumulants) of w(t) and R( t) are equal, i.e.,

Rn (t)t→∞ = wn (t)t→∞ ≡ w∞
n . (5)

For stationary turbulence, the steady-state particle
velocity distribution must approach the fluid velocity
distribution, so

w∞
n = wf

n , (6)

where wf is the fluid velocity. We can use (4), (5) and
(6) to obtain the result, using cumulant notation, that

Γn = n wf
n τ . (7)

This equation completes the definition of the Langevin
equation model system by uniquely relating the random
force cumulant coefficients {Γn} to the fluid velocity
cumulants.

3. MODEL IMPLEMENTATION

In principle, we have a well-defined model system.
Although we have not directly determined the tracer
particle velocity probability distribution, P(w ; w0), we
have determined all the moments of w(t) in terms of the
initial velocity, w0, the Lagrangian correlation time
scale, τ , and the statistical properties of the fluid
expressed  by the  ve loci ty  cumulants

  
wf

n , n = 1,2,K{ } .  Consequently, we have

demonstrated that a unique P(w ; w 0) exists, and have
derived its statistical properties in terms of the velocity
moments. However, before this model can be applied in
a numerical simulation two practical difficulties must
be addressed.

The first difficulty is related to our ability to
accurately define the statistical properties of the
stationary fluid or, more specifically, the CBL. In
general, the velocity moments of most fluids, are not
know with sufficient accuracy to determine the velocity
cumulants beyond the first few. This is because the
higher moments are highly dependent on the tails of the
velocity probability distribution where experimental
statistics are poorest. On the other hand, it is only the
first few velocity moments that have been shown to
have a dominant effect on tracer diffusion in the CBL.



The second obstacle to direct implementation of
these equations in a numerical simulation is
mathematical in nature. Assuming all of the moments of
R(t) are known, it is mathematically difficult (if not
impossible) to obtain P( R) from an arbitrary and
infinite number of moments. Thus, it does not seem
possible to obtain an analytic form for P(R) from which
individual values of R( t) can be selected for a numerical
simulation.

To address these practical difficulties, we take the
following approach to defining the system. We begin by
defining the random force coefficients in terms of the
known first three * moments of the fluid velocity using
(7). Assuming the first three velocity moments are

known, and specified to be wf = 0 , wf
2 = σ 2 , and

wf
3 = ζ 3 , then the first three random force coefficients

are

Γ1 = 0 , (8a)

Γ2 = 2σ 2 τ , and (8b)

Γ3 = 3ζ 3 τ . (8c)

To specify the remaining random force
coefficients, we assume a functional form for P(R) in
the limit of t  → 0. As a matter of convenience, we
select a known and simple function that can be defined
by the first three moments of R(t), which we specify
using (8a-c). In this work, we use the “double-block”
function described in the Appendix (obviously, this
distribution is not unique and we are exploring others).
We then use (4) in the t  → 0 limit to define the
remaining values of {Γn } where the higher moments of
R(t) are calculated from the selected P(R). For the
double-block function we have selected, the higher
random forcing coefficients are found to be

Γn =
4 3( )n−2 ζ 3( )n−2

n + 1( )τ σ 2( )n−3 ,  n > 3. (8d)

Using (7), we can now specify the remaining velocity
cumulants (and moments) of the stationary-fluid
velocity. These cumulants are

wf
n =

4 3( )n−2 ζ 3( )n−2

n n + 1( ) σ 2( )n−3 ,  n > 3. (9)

Again we have a well-defined model where all of
the random force coefficients {Γn} are uniquely related
to the fluid velocity cumulants. However, rather than
use the fluid velocity cumulants to define all of the

* This could probably be extended to four or five. However,
only marginal improvement has been reported by Du et al.
(1994) by  including information on the fourth moment in a
Langevin equation model.

random force coefficients, we have done so only for the
first three coefficients where the fluid velocity moments
are accurately known. The remaining random force
coefficients have been defined by assuming a functional
form for P(R) as t  → 0. As a result, all of the random
force coefficients {Γn} are expressed in terms of the

first three moments of the fluid velocity: wf =0, σ2  and
ζ3.

4. NUMERICAL SIMULATION METHOD

The equation we propose for numerically
simulating the Langevin equation model defined by (1),
(2) and (8a-d) is

w(∆t) = w(0)e−∆t τ + Ra (∆t) , (10)

where w(∆t) is the numerically-calculated velocity of a
particle after time step ∆t given velocity w(0) at the
beginning of the time step.  Ra(∆t) is a random velocity
increment with (double-block) probability distribution
Pa(R), which has the same functional form as P(R) in
the limit of ∆t → 0, and the first three moments

Ra (∆t) = 0 ,

Ra
2 (∆t) = σ 2 1 − e−2∆t / τ( ) ≡ σb

2 , and (11)

Ra
3 (∆t) = ζ 3 1 − e−3∆t / τ( ) ≡ ζb

3.

Eqs. (11) completely defines P a(R) since it has a
functional form defined by only the first three moments
(see Appendix).

In general, Pa(R) is only an approximation to P(R),
although they have the exact same first three moments.
The approximate nature of Pa(R) is due to the fact that
the functional form of Pa(R) remains constant; namely,
the double-block form described in the Appendix. On
the other hand, the functional form of P (R) continually
changes with time step. As a result, there is numerical
error in the higher (n > 3) moments of Ra(∆t) and these
are then passed on to the statistical properties of the
velocity w(t).

One can show analytically that in the steady state
the first three moments of the velocity ( w∞ , w∞

2 , and
w∞

3 ) using the numerical simulation method of (10-11)
are exact. Just as is the case with the random velocity
increment Ra(∆t), the approximate nature of Pa(R)
manifests itself in the higher moments of the steady
state velocity (i.e., w∞

n , n > 3).
This approach to defining and simulating the

Langevin equation model system has several positive
aspects. First, we have a well-defined system with
specified values for the random force coefficients {Γn}
that are in agreement with the known turbulence
properties of the actual fluid, namely, the first few



Table 1. Numerically-calculated steady-state particle
velocity moments and exact fluid velocity moments and
in three simulations using S = 0.5 and different time
step values.

Average
∆t/τ = 0.2

numerical
0.05

value
0.01

Exact
value

w∞ 0.00 0.00 0.00 0.

w∞
2 1.00 1.00 1.00 1.

w∞
3 0.50 0.50 0.50 0.5

w∞
4 3.30 3.41 3.44 3.45

w∞
5 4.91 5.32 5.44 5.45

w∞
6 20.99 23.74 24.60 24.73

velocity moments. Second, in the limit of very small
time steps, the numerical simulation results will
approach the exact solution since the functional form of
Pa(R) is equal to P(R) in the limit of t → 0. Finally, the

exact values of the velocity moments wn (t){ }  can be

used to quantitatively determine the accuracy of the
numerical method for any desired time step.

5. EXAMPLE SIMULATIONS

To demonstrate the accuracy of the numerical
method, we performed several computer simulations
using (10-11) for several values of fluid velocity

skewness, S ≡ wf
3 wf

2( )3/ 2
, and for several time step

values. All the simulations used input values of zero
mean fluid velocity, wf  = 0; unit fluid velocity second

moment, wf
2  = 1;  unit time scale, τ = 1; and a sample

of 106 particles.

5.1 Effect of time step size

To demonstrate the increased accuracy of the
method with decreasing time step, simulations were
performed with three time step values, ∆t/τ  = 0.2, 0.05
and 0.01. Using S = 0.5, initial particle velocities were
generated with the steady-state, fluid velocity
distribution. A simulation was then performed for a
duration of 4τ  . To generate initial velocities with the
steady-state distribution, particle velocities were
assigned a first-guess value and then simulated using
the numerical simulation method (10-11) for a period
from t = – 4τ  to 0.

Table 1 compares the first six steady-state particle
velocity moments averaged over the time period from t
= 0 to 4τ   with the exact values for the three
simulations. (The first three exact fluid moments were
input to the simulation and the higher exact moments
are given by (9).) These values show that the numerical
error in the particle velocity moments does become very

Fig. 1. Well-mixed velocity (a) and position (b)
probability density functions at t = 0 (solid line) and
t = 4 τ   (dashed line) from simulation using S = 0.5
and ∆t/τ = 0.01.

w

P(w)

z

P(z)

t = 0
t = 4τ

(a)

(b)

small with decreasing time step. In these calculations,
the statistical error was kept smaller than the numerical
error by using a large sample size (106 particles).
Consequently, the error in the first three moments is
essentially zero.

5.2 Well-mixed  condition

To test the numerical simulation method versus the
well-mixed condition, initial particle velocities were
generated which had the steady-state velocity
distribution and which had particle positions, z ,
uniformly distributed in a bounded region between z  = 0
and z = 1. This was done in the simulation with ∆t/τ  =
0.01 described in section 5.1. Particle positions were
calculated using the displacement equation:
z(∆t) = z(0) + 1

2 w(0) + w(∆t)[ ]∆t .  A  pe r iod ic

boundary condition  was imposed at the two boundaries
(e.g., particles leaving the region at z  = 1 were placed at
z = 0 with their velocity unchanged). Figure 1 shows
the velocity and position distributions at the beginning
(t = 0) and end of the simulation (t  = 4 τ) are very close
to each other. This indicates that the well-mixed
condition is met. Small differences in the tails of the ve-
locity distribution can lead to significant differences in
the higher velocity moments, but may not be



Fig. 2. Steady-state particle velocity probability
density functions, P(w), from three numerical
simulations with  S  = 0.0, 0.5, and 1.0, respectively,
and ∆t/τ = 0.01.

w

P(w)

Fig. 3. Exact analytic (solid line) and numerically-
calculated (dashed line) first six velocity moments
versus time for simulation using S = 0.5, ∆t/τ = 0.01,
and particles initialized with zero velocity.

distinguishable in Fig. 1. However, the first six velocity
moments at the beginning and end of the simulation
were the same within the uncertainty associated with
the particle number (+/– 2 × standard error).

5.3 Approach to steady-state for particles with zero
initial velocity

To demonstrate the accuracy of the numerical
method under non-steady-state conditions and over a
range of skewness, three simulations were performed in
which all the particles were initialized with zero
velocity. These simulations used S = 0.0, 0.5, and 1.0,
and were all done with ∆t/τ  = 0.01 from t = 0 to 10τ  .
Fig. 2 shows the steady-state numerically-calculated
probability density function of particle velocity, P(w),
at the end of each simulation.  For the S = 0.5 case, Fig.
3 shows the time-dependent values of the numerically-
calculated first six velocity moments and the
corresponding exact analytic expressions derived from
(3-4). There is excellent agreement between the
numerically-calculated and analytic time-dependent
moments.

For the three values of S, Table 2 shows the first
six numerical steady-state moment values averaged
from t  = 6 to 10τ , are in excellent agreement with the
exact, fluid moment values. When S = 0, Table 2 and
Fig. 1 show that the simulated velocity distribution is
Gaussian to a very good approximation.

6. SUMMARY

We have presented a numerical method for
simulating the Langevin equation with skewed random
forcing which is exact in the limit of infinitesimal time
step. Simulations using this method (a) yield acceptably
small errors for velocity moments when the time step is
within practical limits and (b) maintain initially well-
mixed velocity and position distributions.

In future work, we hope to explore alternate simple
probability distributions for generating random velocity
increments, implement physically-realistic boundary
conditions, and test the method against CBL diffusion
experiments.
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8. APPENDIX

The "double-block" probability density function, P (b),
for a random variable, b, is defined as a sum of two
overlapping uniform probability distributions,

P(b)  = P1(b)  + P2(b),
where

P1(b) =
p1,  if (m1 − ∆1 ) ≤ b ≤ (m1 + ∆1 )

0 ,  elsewhere





and

w

w2

w3

w4

w5

w6

t/τ



Table 2. Numerical steady-state particle velocity moments and exact fluid
velocity moments for three simulations with S = 0.0, 0.5, and 1.0, respectively,
using ∆t/τ = 0.01 .

S = 0.0 S = 0.5 S = 1.0
Numerical Exact Numerical Exact Numerical Exact

w∞ 0.00 0. 0.00 0. 0.00 0.

w∞
2 1.00 1. 1.00 1. 1.00 1.

w∞
3 0.00 0. 0.50 0.5 1.00 1.

w∞
4 2.99 3. 3.45 3.45 4.78 4.8

w∞
5 -0.02 0. 5.46 5.45 13.5 13.6

w∞
6 14.9 15. 24.68 24.73 59.39 59.71

P2 (b) =
p2 ,  if (m2 − ∆2 ) ≤ b ≤ (m2 + ∆2 )

0 ,  elsewhere





,

where the six parameters which define this distribution are the
means, m 1 and m2; half-widths, ∆ 1 and ∆2; and probability
densities, p 1 and p 2, of the two uniform distributions,
respectively. These six unknown parameters are reduced to
four using the following two equations:

∆1
2 = m1

2 + σb
2  and

∆2
2 = m2

2 + σb
2 .

The remaining four parameters are then determined from the

first three moments of b , b =0, σb
2 , and ζ b

3, along with the
equation for the “zeroth” moment (total probability equal to
one).  The result is

  

m1,2 =
1

σb
2

1

2
ζb

3 m
1

4
ζb

6 +
1

2
σb

6





1
2










,

p1 =
m2

2∆1 m2 − m1( ) , and

p2 =
−m1

2∆2 m2 − m1( ) .
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